Saturday, November 23

NASA — Tiny BurstCube’s Tremendous Travelogue

The SLS and Orion spacecraft can be seen in the foreground with a full Moon to the left of the spacecraft. The SLS is orange, Orion is white, and the Moon is grey and white. A lightning tower is to the left of the Moon.  Credit: NASA/Ben SmegelskyALT

On November 14, NASA is set to launch the uncrewed Artemis I flight test to the Moon and back. Artemis I is the first integrated flight test of the Space Launch System (SLS) rocket, the Orion spacecraft, and Exploration Ground Systems at NASA’s Kennedy Space Center in Florida. These are the same systems that will bring future Artemis astronauts to the Moon.

The Vehicle Assembly Building (VAB), mobile launcher, and Space Launch System (SLS) rocket can all be seen from a low-angle perspective. The VAB is a large grey and white cube-shaped building with large doors. The mobile launcher is grey, black, and white, with many pipes and levels, and the SLS rocket is orange with two white boosters on either side.  Credit: NASA/Ben SmegelskyALT

Standing 322 feet (98 meters) tall, the SLS rocket comprises of a core stage, an upper stage, two solid boosters, and four RS-25 engines. The SLS rocket is the most powerful rocket in the world, able to carry 59,500 pounds (27 metric tons) of payloads to deep space — more than any other vehicle. With its unprecedented power, SLS is the only rocket that can send the Orion spacecraft, astronauts, and cargo directly to the Moon on a single mission.

The massive Vehicle Assembly Building (VAB) is a large grey and white cube-shaped building with large doors. It has an American flag on it, along with the NASA meatball logo and the Artemis mission logo. The Space Launch System (SLS) rocket stands to the right of the VAB. The SLS is orange with two white boosters on either side.  Credit: NASA/Kim ShiflettALT

Before launch, Artemis I has some big help: the Vehicle Assembly Building (VAB) at KSC is the largest single-story building in the world. The VAB was constructed for the assembly of the Apollo/Saturn V Moon rocket, and this is where the SLS rocket is assembled, maintained, and integrated with the Orion spacecraft. 

NASA’s Space Launch System (SLS) rocket, with the Orion capsule atop, slowly rolls out of the Vehicle Assembly Building on the crawler-transporter 2. The crawler is grey with treads and walkways, and the SLS is orange with two white boosters on either side.  Credit: NASA/Kim ShiflettALT

The mobile launcher is used to assemble, process, and launch the SLS rocket and Orion spacecraft. The massive structure consists of a two-story base and a tower equipped with a number of connection lines to provide the rocket and spacecraft with power, communications, coolant, and fuel prior to launch.

The crawler-transporter 2 is on the left, with the Space Launch System (SLS) rocket on the right of this photo. The crawler is grey with treads and walkways, and the SLS is orange with two white boosters on either side. The sky is blue with fluffy white clouds in the background.  Credit: NASA/Joel KowskyALT

Capable of carrying 18 million pounds (8.2 million kg) and the size of a baseball infield, crawler-transporter 2 will transport SLS and Orion the 4.2 miles (6.8 km) to Launch Pad 39B. This historic launch pad was where the Apollo 10 mission lifted off from on May 18, 1969, to rehearse the first Moon landing.

An artist’s rendition of the Orion flight shows a portion of a blue and white Earth in a semi-circle at the bottom of this photo; at the center, a white and grey Orion heads towards a semi-lit Moon in grey. The rest of the image is black, with some small stars dotted throughout.  Credit: NASA/Liam YanulisALT

During the launch, SLS will generate around 8.8 million pounds (~4.0 million kg) of thrust, propelling the Orion spacecraft into Earth’s orbit. Then, Orion will perform a Trans Lunar Injection to begin the path to the Moon. The spacecraft will orbit the Moon, traveling 40,000 miles beyond the far side of the Moon — farther than any human-rated spacecraft has ever flown.

An artist’s rendition of the Orion spacecraft is in the foreground in front of the Moon. The perspective is from one of the spacecraft’s solar arrays. The solar array is black, with white and orange dots throughout. The spacecraft has a large NASA logo in red and is grey, white, and black overall.  Credit: NASA/Liam YanulisALT

The Orion spacecraft is designed to carry astronauts on deep space missions farther than ever before. Orion contains the habitable volume of about two minivans, enough living space for four people for up to 21 days. Future astronauts will be able to prepare food, exercise, and yes, have a bathroom. Orion also has a launch abort system to keep astronauts safe if an emergency happens during launch, and a European-built service module that fuels and propels the spacecraft.

Commander Moonikin Campos, a manikin, sits aboard the Orion spacecraft in the Orion Crew Survival suit, which is orange with blue straps. The helmet is white with a black tinted visor. A black hose connects to the suit, and the blue background shows NASA and Artemis logos.  Credit: NASA/Frank MichauxALT

While the Artemis I flight test is uncrewed, the Orion spacecraft will not be empty: there will be three manikins aboard the vehicle. Commander Moonikin Campos will be sitting in the commander’s seat, collecting data on the vibrations and accelerations future astronauts will experience on the journey to the Moon. He is joined with two phantom torsos, Helga and Zohar, in a partnership with the German Aerospace Center and Israeli Space Agency to test a radiation protection vest.

Seen from above is the upside-down, open interior of the Orion capsule with 10 CubeSats secured onto its walls. The interior is yellowish-green and textured, and the exterior of the capsule segment is white with a few black panels. It sits in a processing facility with white walls and servicing platforms surrounding the spacecraft.  Credit: NASA/Cory HustonALT

A host of shoebox-sized satellites called CubeSats help enable science and technology experiments that could enhance our understanding of deep space travel and the Moon while providing critical information for future Artemis missions.

An artist’s rendition of the Orion spacecraft reentering Earth’s atmosphere. Orion is an orange streak coming from the top right to the left center of the photo, and Earth is seen at night with city lights as dots and a thin strip of atmosphere beneath the Sun.  Credit: NASA/Liam YanulisALT

At the end of the four-week mission, the Orion spacecraft will return to Earth. Orion will travel at 25,000 mph (40,000 km per hour) before slowing down to 300 mph (480 km per hour) once it enters the Earth’s atmosphere. After the parachutes deploy, the spacecraft will glide in at approximately 20 mph (32 km per hour) before splashdown about 60 miles (100 km) off the coast of California. NASA’s recovery team and the U.S. Navy will retrieve the Orion spacecraft from the Pacific Ocean.

A large gray ship in the background is deploying small boats, with the Orion spacecraft has large inflatable balloons on top.  Credit: NASAALT

With the ultimate goal of establishing a long-term presence on the Moon, Artemis I is a critical step as NASA prepares to send humans to Mars and beyond.

Make sure to follow us on Tumblr for your regular dose of space!

source: nasa.tumblr.com